
Solution
2009 Algebra - Midsemestral Exam - Semester I

1. (i)In the group S9, find an element σ satisfying
σ(1, 3, 4, 9)(7, 2, 4)σ−1 = (8, 1, 6, 3)(5, 9, 7).

(ii) Prove that if G is a group in which the map x 7→ x−1 is a homomorphism, then G must be
abelian.

OR

(i) Let G be any group and a, b ∈ G. Prove that aba−1b−1 can be written as aba−1b−1 == x2y2z2

for some x, y, z ∈ G.

(ii) Let g be an element of order n in a group G and suppose xgx−1 = gd for some x ∈ G. Prove
that (n, d) = 1.

Solution: (i) Order of (1, 3, 4, 9)(7, 2, 4) is 6 but order of (8, 1, 6, 3)(5, 9, 7) is 12, therefore, there
is no σ ∈ S9 satisfying the mentioned equation.

(ii) The map x 7→ x−1 is homomorphism i.e. (xy)−1 = x−1y−1 for all x, y ∈ G.

Now, taking inverse on both sides we get, xy = yx for all x, y ∈ G i.e. G is abelian.

OR

(i)

(ii) Here o(g) = n and hence o(xgx−1) = o(g) = n.

Let (n, d) = m =⇒ m divides n and d both.

Now, (xgx−1)
n
m = gd

n
m = e because d

m is an integer and o(g) = n. But as n
m ≤ n and o(xgx−1) = n,

we conclude that m = 1.

2. If H is a subgroup of a group G such that each left coset of H is equal to some right coset, then
prove that H is normal in G.

OR

Write out an isomorphism between the group G of eight complex matrices(
1 0
0 1

)
,

(
0 1
−1 0

)
,

(
i 0
0 −i

)
,

(
0 i
i 0

)
,

(
−1 0
0 −1

)
,

(
0 −1
1 0

)
,

(
−i 0
0 i

)
,

(
0 −i
−i 0

)
and the quternion group H consisting of symbols 1, i, j, k,−1,−i,−j,−k with the multiplication
defined by

±1.i = ±i,±1.j = ±j,±1.k = ±k,

i2 = j2 = k2 = −1, i.j = k, j.i = −k, j.k = i, k.j = −i, k.i = j, i.k = −j

.

Solution: Let g1 ∈ G be arbitrary. Then, we have to show that g1Hg
−1
1 ⊆ H. Consider, the left

coset g1H. From given condition, there exists g2 ∈ G such that g1H = Hg2 i.e. g1Hg
−1
2 = H.

But g1 ∈ g1H = Hg2 =⇒ g1g
−1
2 ∈ H =⇒ g1Hg

−1
1 = g1Hg

−1
2 g2g

−1
1 ⊆ H as g1Hg

−1
2 = H.

OR
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Define a map that sends

(
1 0
0 1

)
to 1,

(
−1 0
0 −1

)
to −1,

(
i 0
0 −i

)
to i,

(
0 i
i 0

)
to j,

(
0 −1
1 0

)
to k,

(
−i 0
0 i

)
to −i,

(
0 −i
−i 0

)
to −j and

(
0 1
−1 0

)
to −k.

This map will be a group isomorphism between G and H.

3. Let G be a non-abelian group of order pq where p < q are primes. Prove that there is a normal
subgroup of order q in G.

OR

If Γ2(n) denotes the number of elements in Sn having order ≤ 2, prove that Γ2(n) = Γ2(n − 1) +
(n− 1)Γ2(n− 2) for all n ≥ 3.

Solution: First of all we show that G has a unique subgroup of order q.

From Cauchy’s theorem there is an element x ∈ G of order q. Consider P :=< x >, cyclic subgroup
generated by x. Let there is another subgroup Q =< y > of order q. From Cauchy’s theorem, we
get z ∈ G of order p.

Now, consider R :=< z >. As order of PR and QR are pq, therefore PR = QR.

x ∈ P =⇒ x ∈ PR = QR =⇒ x = gh where g ∈ Q, h ∈ R =⇒ h = g−1x ∈ QP ∩R.

As, order of QP is p2, therefore o(h) divides p2 as well as q i.e. o(h) = 1 as p, q are distinct primes
and hence x = g. Therefore, we get P ⊆ Q and similarly we can show that Q ⊆ P i.e. P = Q.
Therefore, G has only one subgroup P of order q. Now, let s ∈ G and consider the subgroup sPs−1.
As, the order of sPs−1 is q, therefore sPs−1 = P because G has a unique subgroup of order q and
hence P is normal.

OR

In Sn, an element is of order 2 is product of k disjoint transposition where k ≤ n/2. It is known
that Sn−1 is inside Sn. So, clearly Γ2(n) ≥ Γ2(n − 1). General element of order ≤ 2 are (1)
and (i1, j1)(i2, j2) · · · (ik, jk) where i1, j1, i2, j2, · · · , ik, jk are distinct numbers chosen from S :=
{1, 2, . . . , n−1, n}. Number of elements of order ≤ 2 from the set S′ := {1, 2, . . . , n−1} is Γ2(n−1)
which is including (1). Now, the number of elements of order 2 of the (1, n)x where x is also an
element of order 2 from the set {1, 2, . . . , n− 2} is Γ2(n− 2). Same number will come for (i, n) for
all 1 ≤ i ≤ n− 1. So, Γ2(n) = Γ2(n− 1) + (n− 1)Γ2(n− 2) for n ≥ 3.

4. For a subgroup H of a group G, prove that the centralizer

CG(H) := {g ∈ G : gh = hg∀h ∈ H}

is a normal subgroup of the normalizer

NG(H) : {g ∈ G : gH = Hg}

.

OR

Let G be any group and let σ : G→ G be an automorphism. If Int(g) denotes the inner automor-
phism x 7→ gxg−1 on G for any g ∈ G, show that the composite σ ◦ Int(g) ◦ σ−1 = Intt(σ(g)).

Solution: It is clear that CG(H) is a subgroup of NG(H).

Let, g ∈ NG(H) and g′ ∈ CG(H). We have to show that gg′g−1 ∈ CG(H). Let h ∈ H.
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Then, gg′g−1h = gg′h′g−1 = gh′g′g−1 = hgg′g−1 where g−1h = h′g−1 because g−1h ∈ g−1H =
Hg−1 which implies that CG(H) is a normal subgroup of NG(H).

OR

Let x ∈ G. Then, σ ◦ Int(g) ◦ σ−1(x) = σ(gσ−1(x)g−1) = σ(g)xσ(g)−1 = Intt(σ(g))(x) using the
fact that σ is an automorphism. Hence the equality is established.

5. Give an example of groups N1 ≤ N2 ≤ N3 where N1 is normal in N2 and N2 is normal in N3 but
N1 is not normal in N3.

OR

Show that A4 has no subgroup of order 6.

Solution:

Consider N3 = D4 =< a, b : a4 = b2 = e, bab = a−1 >, N2 =< a2, b > and N1 =< b >. Then, N1 is
normal in N2, N2 is normal in N3 but N1 is not normal in N3.

OR

A4 = {(1), (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3), (1, 2, 3), (1, 3, 2), (1, 2, 4), (1, 4, 2), (1, 3, 4), (1, 4, 3), (2, 3, 4), (2, 4, 3)}
i.e. A4 has 3 elements of order 2

(1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)

and 8 elements of order 3

(1, 2, 3), (1, 3, 2), (1, 2, 4), (1, 4, 2), (1, 3, 4), (1, 4, 3), (2, 3, 4), (2, 4, 3)

. Let H be a subgroup of order 6. Then, using Cauchy’s theorem H has an element say (a, b, c)
of order 3. So, (a, b, c)−1 = (a, c, b) ∈ H. Also, (1) ∈ H. Now, using Cauchy’s theorem H has an
element of order 2 i.e. one of (a, b)(c, d), (a, c)(b, d), (a, d)(b, c) belongs to H.

Case 1: Let (a, b)(c, d) ∈ H. Then, (a, b, c)(a, b)(c, d) = (a, c, d) ∈ H and (a, c, b)(a, b)(c, d) =
(b, c, d) ∈ H. Also, (a, c, d)−1 = (a, d, c) ∈ H and (b, c, d)−1 = (b, d, c) ∈ H. Therefore, H contains
more than 6 elements which is not possible.

Case 2: Let (a, c)(b, d) ∈ H. Then, (a, b, c)(a, c)(b, d) = (b, d, c) ∈ H and (a, c, b)(a, c)(b, d) =
(a, b, d) ∈ H. Also, (b, d, c)−1 = (b, c, d) ∈ H and (a, b, d)−1 = (a, d, b) ∈ H. Therefore, H contains
more than 6 elements which is not possible.

Case 3: Let (a, d)(b, c) ∈ H. Then, (a, b, c)(a, d)(b, c) = (a, d, b) ∈ H and (a, c, b)(a, d)(b, c) =
(a, d, c) ∈ H. Also, (a, d, b)−1 = (a, b, d) ∈ H and (a, d, c)−1 = (a, c, d) ∈ H. Therefore, H contains
more than 6 elements which is not possible.

Hence, there is no subgroup of A4 of order 6.

6. If G is an abelian group of order pn, where p is a prime. Show that G has subgroups of order pr

with r ≤ n.

OR

Let A be the matrix

(
1 1
0 1

)
. Prove that a matrix of the form

(
1 y
0 1

)
where y ∈ R, is expressible

as DAD−1A−1 for some diagonal matrix D of the form diag(t, t−1) with t ∈ R∗ if and only if
y ∈ (−1,∞).

Solution: See the proof of Sylow’s first theorem from any standard book.
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OR

Here, A =

(
t 1
0 t−1

)
and let D =

(
1 y
0 1

)
where t ∈ R∗. Then DAD−1A−1 =

(
1 t2 − 1
0 1

)
.

Therefore,

(
1 y
0 1

)
where y ∈ R, is expressible as DAD−1A−1 if and only if y ∈ (−1,∞) as

t2 − 1 ∈ (−1,∞) for t ∈ R∗.
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