1. (i) In the group S_9 , find an element σ satisfying $\sigma(1,3,4,9)(7,2,4)\sigma^{-1} = (8,1,6,3)(5,9,7).$

(ii) Prove that if G is a group in which the map $x \mapsto x^{-1}$ is a homomorphism, then G must be abelian.

\mathbf{OR}

(i) Let G be any group and $a, b \in G$. Prove that $aba^{-1}b^{-1}$ can be written as $aba^{-1}b^{-1} == x^2y^2z^2$ for some $x, y, z \in G$.

(ii) Let g be an element of order n in a group G and suppose $xgx^{-1} = g^d$ for some $x \in G$. Prove that (n, d) = 1.

Solution: (i) Order of (1, 3, 4, 9)(7, 2, 4) is 6 but order of (8, 1, 6, 3)(5, 9, 7) is 12, therefore, there is no $\sigma \in S_9$ satisfying the mentioned equation.

(ii) The map $x \mapsto x^{-1}$ is homomorphism i.e. $(xy)^{-1} = x^{-1}y^{-1}$ for all $x, y \in G$.

Now, taking inverse on both sides we get, xy = yx for all $x, y \in G$ i.e. G is abelian.

OR

(i)

(ii) Here o(g) = n and hence $o(xgx^{-1}) = o(g) = n$.

Let $(n, d) = m \implies m$ divides n and d both.

Now, $(xgx^{-1})^{\frac{n}{m}} = g^{d\frac{n}{m}} = e$ because $\frac{d}{m}$ is an integer and o(g) = n. But as $\frac{n}{m} \le n$ and $o(xgx^{-1}) = n$, we conclude that m = 1.

2. If H is a subgroup of a group G such that each left coset of H is equal to some right coset, then prove that H is normal in G.

OR

Write out an isomorphism between the group G of eight complex matrices

 $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}, \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} -i & 0 \\ 0 & i \end{pmatrix}, \begin{pmatrix} 0 & -i \\ -i & 0 \end{pmatrix}$ and the quternion group H consisting of symbols 1, i, j, k, -1, -i, -j, -k with the multiplication defined by

$$\pm 1.i = \pm i, \pm 1.j = \pm j, \pm 1.k = \pm k,$$

$$i^2 = j^2 = k^2 = -1, i.j = k, j.i = -k, j.k = i, k.j = -i, k.i = j, i.k = -j$$

Solution: Let $g_1 \in G$ be arbitrary. Then, we have to show that $g_1Hg_1^{-1} \subseteq H$. Consider, the left coset g_1H . From given condition, there exists $g_2 \in G$ such that $g_1H = Hg_2$ i.e. $g_1Hg_2^{-1} = H$. But $g_1 \in g_1H = Hg_2 \implies g_1g_2^{-1} \in H \implies g_1Hg_1^{-1} = g_1Hg_2^{-1}g_2g_1^{-1} \subseteq H$ as $g_1Hg_2^{-1} = H$. **OR**

Define a map that sends
$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 to 1, $\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$ to -1 , $\begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}$ to i , $\begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$ to j , $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ to k , $\begin{pmatrix} -i & 0 \\ 0 & i \end{pmatrix}$ to $-i$, $\begin{pmatrix} 0 & -i \\ -i & 0 \end{pmatrix}$ to $-j$ and $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ to $-k$.

This map will be a group isomorphism between G and H.

3. Let G be a non-abelian group of order pq where p < q are primes. Prove that there is a normal subgroup of order q in G.

OR

If $\Gamma_2(n)$ denotes the number of elements in S_n having order ≤ 2 , prove that $\Gamma_2(n) = \Gamma_2(n-1) + (n-1)\Gamma_2(n-2)$ for all $n \geq 3$.

Solution: First of all we show that G has a unique subgroup of order q.

From Cauchy's theorem there is an element $x \in G$ of order q. Consider $P := \langle x \rangle$, cyclic subgroup generated by x. Let there is another subgroup $Q = \langle y \rangle$ of order q. From Cauchy's theorem, we get $z \in G$ of order p.

Now, consider $R := \langle z \rangle$. As order of PR and QR are pq, therefore PR = QR.

 $x \in P \implies x \in PR = QR \implies x = gh$ where $g \in Q, h \in R \implies h = g^{-1}x \in QP \cap R$.

As, order of QP is p^2 , therefore o(h) divides p^2 as well as q i.e. o(h) = 1 as p, q are distinct primes and hence x = g. Therefore, we get $P \subseteq Q$ and similarly we can show that $Q \subseteq P$ i.e. P = Q. Therefore, G has only one subgroup P of order q. Now, let $s \in G$ and consider the subgroup sPs^{-1} . As, the order of sPs^{-1} is q, therefore $sPs^{-1} = P$ because G has a unique subgroup of order q and hence P is normal.

OR

In S_n , an element is of order 2 is product of k disjoint transposition where $k \leq n/2$. It is known that S_{n-1} is inside S_n . So, clearly $\Gamma_2(n) \geq \Gamma_2(n-1)$. General element of order ≤ 2 are (1) and $(i_1, j_1)(i_2, j_2) \cdots (i_k, j_k)$ where $i_1, j_1, i_2, j_2, \cdots, i_k, j_k$ are distinct numbers chosen from S := $\{1, 2, \ldots, n-1, n\}$. Number of elements of order ≤ 2 from the set $S' := \{1, 2, \ldots, n-1\}$ is $\Gamma_2(n-1)$ which is including (1). Now, the number of elements of order 2 of the (1, n)x where x is also an element of order 2 from the set $\{1, 2, \ldots, n-2\}$ is $\Gamma_2(n-2)$. Same number will come for (i, n) for all $1 \leq i \leq n-1$. So, $\Gamma_2(n) = \Gamma_2(n-1) + (n-1)\Gamma_2(n-2)$ for $n \geq 3$.

4. For a subgroup H of a group G, prove that the centralizer

$$C_G(H) := \{g \in G : gh = hg \forall h \in H\}$$

is a normal subgroup of the normalizer

$$N_G(H): \{g \in G: gH = Hg\}$$

OR

Let G be any group and let $\sigma : G \to G$ be an automorphism. If Int(g) denotes the inner automorphism $x \mapsto gxg^{-1}$ on G for any $g \in G$, show that the composite $\sigma \circ Int(g) \circ \sigma^{-1} = Intt(\sigma(g))$. **Solution:** It is clear that $C_G(H)$ is a subgroup of $N_G(H)$. Let, $g \in N_G(H)$ and $g' \in C_G(H)$. We have to show that $gg'g^{-1} \in C_G(H)$. Let $h \in H$. Then, $gg'g^{-1}h = gg'h'g^{-1} = gh'g'g^{-1} = hgg'g^{-1}$ where $g^{-1}h = h'g^{-1}$ because $g^{-1}h \in g^{-1}H = Hg^{-1}$ which implies that $C_G(H)$ is a normal subgroup of $N_G(H)$.

OR

Let $x \in G$. Then, $\sigma \circ Int(g) \circ \sigma^{-1}(x) = \sigma(g\sigma^{-1}(x)g^{-1}) = \sigma(g)x\sigma(g)^{-1} = Intt(\sigma(g))(x)$ using the fact that σ is an automorphism. Hence the equality is established.

5. Give an example of groups $N_1 \leq N_2 \leq N_3$ where N_1 is normal in N_2 and N_2 is normal in N_3 but N_1 is not normal in N_3 .

OR

Show that A_4 has no subgroup of order 6.

Solution:

Consider $N_3 = D_4 = \langle a, b : a^4 = b^2 = e, bab = a^{-1} \rangle$, $N_2 = \langle a^2, b \rangle$ and $N_1 = \langle b \rangle$. Then, N_1 is normal in N_2 , N_2 is normal in N_3 but N_1 is not normal in N_3 .

OR

 $A_4 = \{(1), (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3), (1, 2, 3), (1, 3, 2), (1, 2, 4), (1, 4, 2), (1, 3, 4), (1, 4, 3), (2, 3, 4), (2, 4, 3)\}$ i.e. A_4 has 3 elements of order 2

and 8 elements of order 3

$$(1, 2, 3), (1, 3, 2), (1, 2, 4), (1, 4, 2), (1, 3, 4), (1, 4, 3), (2, 3, 4), (2, 4, 3)$$

. Let *H* be a subgroup of order 6. Then, using Cauchy's theorem *H* has an element say (a, b, c) of order 3. So, $(a, b, c)^{-1} = (a, c, b) \in H$. Also, $(1) \in H$. Now, using Cauchy's theorem *H* has an element of order 2 i.e. one of (a, b)(c, d), (a, c)(b, d), (a, d)(b, c) belongs to *H*.

Case 1: Let $(a,b)(c,d) \in H$. Then, $(a,b,c)(a,b)(c,d) = (a,c,d) \in H$ and $(a,c,b)(a,b)(c,d) = (b,c,d) \in H$. Also, $(a,c,d)^{-1} = (a,d,c) \in H$ and $(b,c,d)^{-1} = (b,d,c) \in H$. Therefore, *H* contains more than 6 elements which is not possible.

Case 2: Let $(a, c)(b, d) \in H$. Then, $(a, b, c)(a, c)(b, d) = (b, d, c) \in H$ and $(a, c, b)(a, c)(b, d) = (a, b, d) \in H$. Also, $(b, d, c)^{-1} = (b, c, d) \in H$ and $(a, b, d)^{-1} = (a, d, b) \in H$. Therefore, *H* contains more than 6 elements which is not possible.

Case 3: Let $(a,d)(b,c) \in H$. Then, $(a,b,c)(a,d)(b,c) = (a,d,b) \in H$ and $(a,c,b)(a,d)(b,c) = (a,d,c) \in H$. Also, $(a,d,b)^{-1} = (a,b,d) \in H$ and $(a,d,c)^{-1} = (a,c,d) \in H$. Therefore, *H* contains more than 6 elements which is not possible.

Hence, there is no subgroup of A_4 of order 6.

6. If G is an abelian group of order p^n , where p is a prime. Show that G has subgroups of order p^r with $r \leq n$.

OR

Let A be the matrix $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$. Prove that a matrix of the form $\begin{pmatrix} 1 & y \\ 0 & 1 \end{pmatrix}$ where $y \in \mathbb{R}$, is expressible as $DAD^{-1}A^{-1}$ for some diagonal matrix D of the form $\operatorname{diag}(t, t^{-1})$ with $t \in \mathbb{R}^*$ if and only if $y \in (-1, \infty)$.

Solution: See the proof of Sylow's first theorem from any standard book.

OR Here, $A = \begin{pmatrix} t & 1 \\ 0 & t^{-1} \end{pmatrix}$ and let $D = \begin{pmatrix} 1 & y \\ 0 & 1 \end{pmatrix}$ where $t \in \mathbb{R}^*$. Then $DAD^{-1}A^{-1} = \begin{pmatrix} 1 & t^2 - 1 \\ 0 & 1 \end{pmatrix}$. Therefore, $\begin{pmatrix} 1 & y \\ 0 & 1 \end{pmatrix}$ where $y \in \mathbb{R}$, is expressible as $DAD^{-1}A^{-1}$ if and only if $y \in (-1, \infty)$ as $t^2 - 1 \in (-1, \infty)$ for $t \in \mathbb{R}^*$.